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Elliptic Relaxation of a Tensor Representation

for the Redistribution Terms in a

Reynolds Stress Turbulence Model

J�R�CARLSON AND T�B�GATSKI

Computational Modeling � Simulation Branch

NASA Langley Research Center� Hampton� VA ������ USA

Abstract

A formulation to include the e	ects of wall proximity in a second�moment
closure model that utilizes a tensor representation for the redistribution terms
in the Reynolds stress equations is presented� The wall�proximity e	ects are
modeled through an elliptic relaxation process of the tensor expansion coef�
�cients that properly accounts for both correlation length and time scales as
the wall is approached� Direct numerical simulation data and Reynolds stress
solutions using a full di	erential approach are compared to the tensor repre�
sentation approach for the case of fully developed channel �ow�

�� INTRODUCTION

The theoretical development of higher order closure models� such as Reynolds
stress models� have primarily been formulated based on high Reynolds number as�
sumptions� The in�uence of solid boundaries on these closure models has usually been
accounted for through either a wall function approach or a modi�cation to the high
Reynolds number form of the pressure�related correlations and tensor dissipation rate
and predicated on the near�wall asymptotic behavior of the various velocity second
moments �So et al� ����� Hanjali�c ���	
�

A broader based attempt to account for the proximity of a solid boundary is
the elliptic relaxation approach introduced over a decade ago �Durbin ����
 and
further developed for second�moment closures �Durbin ����a� Wizman et al� ����

Manceau and Hanjali�c ����� Manceau� Carlson and Gatski ����
� In its two�equa�
tion form the v��f model has been applied to a variety of �ows �e�g�� Durbin ����b�
����
 Pettersson Reif et al� ����
� The new approach outlined here introduces a ten�
sor representation for the combined e�ects of a near�wall velocity�pressure gradient
correlation and anisotropic dissipation rate that asymptotes to a high Reynolds num�
ber form away from solid boundaries through an elliptic equation for the polynomial
expansion coe�cients� The development of a generalized methodology for determin�
ing the polynomial expansion coe�cients of representations for the turbulent stress
anisotropies by �Gatski and Jongen ����
 is extended to an elliptic relaxation proce�
dure for these expansion coe�cients�

Although the material presented here introduces tensor representations and a ten�
sor projection methodology into the elliptic relaxation formulation� this work can also
be viewed as an intermediate step between a fully explicit elliptic relaxation algebraic
Reynolds stress formulation and the full di�erential elliptic relaxation Reynolds stress
formulation�

�



The predictive capabilities of the new model are assessed through comparisons
with direct numerical simulation channel �ow data �Moser et al� ����
� These com�
parisons include both mean and turbulent �ow quantities�

�� Theoretical Background and Development

In this section� a mathematical framework is developed for the Reynolds stress
transport equations and the corresponding elliptic relaxation equation when a tensor
representation of the redistribution terms is used in the formulation� The method�
ology introduces a set of elliptic relaxation equations for the polynomial expansion
coe�cients of the chosen representation� The � � f model uses the redistributive
terms in the elliptic equations� while the � ��n model uses the expansion coe�cients
in the elliptic equations� Both models use the Reynolds stress transport equations�

��� Transport Equations

The transport of the Reynolds stresses �ij �� �uiuj
 is governed by the equation

D�ij
Dt

� ��ik �Uj

�xk
� �jk

�Ui

�xk
� �ij � �ij �DT

ij �D�
ij � ��


where Ui is the mean velocity� �ij is the pressure redistribution term� �ij is the tensor
dissipation rate� and DT

ij and D�
ij are the turbulent transport and viscous di�usion�

respectively� In the development outlined here� it is best to have �ij given by

�ij � �ui �p
�xj

� uj
�p

�xi
�
�

�

� puk
�xk

�ij� ��


so that the trace of the pressure redistribution term is zero� In the application of the
elliptic relaxation method� it is also necessary to account for the e�ect of the dissi�
pation rate anisotropy as the wall is approached� This accounting for the dissipation
rate anisotropy is accomplished �e�g�� Manceau ����
 by a relaxation of the dissipa�
tion rate anisotropy to its wall value� which is assumed to be equal to the Reynolds
stress anisotropy� This assumption allows the Reynolds stress transport equation in
��
 to be written as

D�ij
Dt

� ��ik �Uj

�xk
� �jk

�U i

�xk
� �Kfij � �ij

K
��DT

ij �D�
ij � ��


where
�Kfij � �ij � �� �dij � bij
 � �	


with the Reynolds stress anisotropy bij and dissipation rate anisotropy dij de�ned as

bij �
�ij
�K

� �ij
�
� dij �

�ij
��
� �ij

�
� ��


The original scaling of the relaxation function fij was solely through the turbulent
kinetic energy K
 however� Manceau� Carlson and Gatski �����
 have recently shown
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that an added dissipation rate factor� �� to the scaling ��Kfij
 eliminates an unwanted
ampli�cation e�ect inherent in the original scaling�

Equation ��
 is closed when the model for the turbulent transport DT
ij is used� In

previous elliptic relaxation studies that used the Reynolds stress transport equations�
the viscous di�usion and turbulent transport terms were modeled as

D�
ij � �r��ij� DT

ij � � �

�xk

�
uiujuk �

�

�
puk

�
�

�

�xl

�
C�

�lk
	K

�c
��ij
�xk

�
� ��


with 	K � ��� and C� � ����� The composite time scale

�c � max

�
�� C�K

�
�

�

����
�
� � �

K

�
� ��


where C�K � � determines the switch to the Kolmogorov time scale ��
�
��� so that
the turbulent time scale will not vanish as the solid boundary is approached� Away
from the boundary� the composite time scale asymptotes to the inertial scale K
��

In the two�dimensional �ow considered here� solutions were obtained for the ���
and ��� normal Reynolds stresses and the ��� shear stress� A transport equation for
the turbulent kinetic energy was obtained from one�half the trace of Eq� ��
 and was
solved for in lieu of the third normal stress ����

DK

Dt
� P � ��

�

�xl

�
C�

�lk
	K

�c
�K

�xk

�
� �r�K� ��


where P � �ik�Ui
�xk� The modeled transport equation for the turbulent dissipation
rate � needed for closure is given by

D�

Dt
�

�

�c

�
C�

��P � C���
�
�

�

�xl

�
C�

�lk
	�
�c

��

�xk

�
� �r�� ��


where 	� � ���� C�� � ��		� C�� � ����� with

C�

�� � C��

�
� � a�

P
�

�
� a� � ����� ���


Note that this form of the dissipation rate equation �Durbin ����
 has introduced the
composite time scale into both the production and destruction of dissipation terms�

��� Elliptic Relaxation Methodology� � � f Model

The rescaled elliptic relaxation equation is driven by the high Reynolds number
form of the pressure�strain rate correlation � and a contribution from the Reynolds
stress anisotropy ��cbij �away from the wall the dissipation rate is assumed to be
isotropic dij � �
� This combination results in an elliptic relaxation equation for fij
given by �cf� Manceau and Hanjali�c ����


�
�� L�r�

�
fij �

�

�K

�
�h

ij � ��cbij
�
� fhij ���
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where

�c �
K

�c
� ���


and the relaxation scales are de�ned as

L � CLmax

�
K���

�
�CLK

�
�

�

����
�
� ���


with CL � ���� and CLK � ��� Previous implementations of the elliptic relaxation
procedure �Manceau and Hanjali�c ����
 using the Speziale� Sarkar and Gatski �SSG

pressure strain rate model �Speziale et al� ����
 used the full nonlinear form� The
linear form of the SSG model implemented here is given by

�h
ij � �

�
C�
��c � C�

�P
�
bij � KC�Sij �KC�

�
bikSkj � Sikbkj � �

�
bnmSnm�ij

�

�KC� �bikWkj �Wikbkj
 ��	


with C�
� � ���� C�

� � ��	� C� � ����� C� � ����� and C� � ��	� Note that since the
linear form of the pressure�strain rate model is used here� the value for CL di�ers
from that used previously �CL � ���� see Manceau and Hanjali�c ����
 for the form
of the elliptic relaxation equation given in ���
�

Boundary conditions are needed for the fij and are determined� in the vicinity
of the wall� by the balance of the redistributive term by the viscous di�usion of the
Reynolds stresses resulting in Table �� Only the ��� and ���components of f have
determinate solutions to the near�wall balance of the stress transport equations� For
the remaining components f�� � f�� � �f��
� are used as boundary conditions to en�
sure that fij is traceless �Manceau� Carlson and Gatski ����
� Symmetry conditions
were applied at the centerline�

In the current work� one of the goals is to develop a methodology for incorporating
a tensor representation for the relaxed redistribution function fij � Once developed and
validated this same procedure can be used in conjunction with tensor representations
for the Reynolds stress anisotropies as well� Such a combination would then yield an
elliptic relaxation explicit algebraic stress model� The details of the representation
for the Reynolds stress anisotropy will not be addressed in the current work� but
deserves further work� As will be discussed in Sec� ���� such a representation would
be consistent with a linear pressure�strain rate model�

��� Representations and Elliptic Relaxation� � � �n Model

Although the elliptic relaxation formulation has already been applied within a full
di�erential Reynolds stress model� a question arises about what role tensor represen�
tations can play within the framework of the elliptic relaxation procedure�

	



Table �� Boundary Conditions for the fij Tensor

Component Wall Centerline

f�� � �

�
f���w Symmetry

f��
��������

���
�

��wy
�
�

Symmetry

f�� � �

�
f���w Symmetry

f��
��������

���
�

��wy
�
�

�

The di�erential elliptic relaxation equation for fij can be obtained from the inte�
gral expression �e�g� Manceau and Hanjali�c� ����


fij�x
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��x
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tensor dissipation rate
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h
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z �
Reynolds stress tensor



���


and G��x�x�
 is approximated by the free�space Greens function G��x�x�
 � �	�r
��

with r � kx� � xk� The �ij contributions to both the dissipation rate and Reynolds
stress anisotropies cancel so that the only remaining contributions are the tensor
dissipation rate and Reynolds stress tensor� The tensor function fij and Fij can be
represented by polynomial expansions of basis tensors just as the associated Reynolds
stress anisotropy tensor bij has been� For such a basis given by T

�m�
ij �x
 �m � �� � � � �n
�

the following representations are assumed�

fij�x
 �
nX
l��

�l�x
T
�l�
ij �x
 ���


�



F �

ij�x�x
�
 �

Fij�x�x�


��x
K�x

�

nX
n��


n�x�x
�
T �n�

ij �x
� ���


A tensor scalar product �denoted by � � �
 between each basis tensor T �m�
ij �x
 and

the representations given in Eqs� ���
 and ���
 can be formed� and this leads �using
matrix notation for convenience
 to

nX
l��

�l�x

h
T�l��x
�T�m��x


i
�
Z
�
d�x�

h
F��x�x�
�T�m��x


i
G��x�x

�


�
nX
n��

Z
�
d�x�
n�x�x

�

h
T�n��x
�T�m��x


i
G��x�x

�
 ���


Since the functional dependency of the indicated scalar product depends solely on x�
Eq� ���
 can be rewritten as

�n�x
 �
Z
�
d�x�
n�x�x

�
G��x�x
�
� ���


The modeling of the scalar function 
n�x�x�
 follows that established previously for
the elliptic relaxation approach� that is


n�x�x
�
 � 
n�x

��x�
 exp
�
� r

Ln

�
� ���


where� in general� the 
n coe�cients can have an associated length scale uniquely
de�ned by the form given in Eq� ���
�

With this model� Eq� ���
 can be rewritten as

�n�x
 �
Z
�
d�x�
n�x

��x�

exp ��r
Ln


	�r
� ���


This equation leads directly to the di�erential counterpart�
�� L�

nr�
�
�n�x
 � �L�

n
n�x�x
 � �h
n�x
� ���


where �h
n�x
 are the expansion coe�cients from the tensor representation of a quasi�

homogeneous form of f � Since the dissipation rate is assumed to be isotropic� f is
composed of the quasi�homogeneous form of the pressure�strain rate correlation and
a contribution due to the Reynolds stress anisotropy� The resultant expression for
�h
n�x
 is given by

nX
n��

�h
n�x


h
T�n��x
�T�m��x


i
�

�

��x
K�x


h�
�h�x
 � ��cb�x


�
�T�m��x


i

�

h
�h

c �x
�T
�m��x


i
��x
K�x


� m � �� � � �n� ��	


�



where the quasi�homogeneous form of the pressure�strain rate model �h
c is given by

�h
c � ��c

�
C�
� � � � C�

�

P
�

�
b�KC�S � KC�

�
bS� Sb� �

�
�b�S�I

�

�KC� �bW�Wb
 � ���


Note that a comparison of Eqs� ��	
 and ���
 shows that the return�to�isotropy term
proportional to b has been modi�ed� The factor �c now in�uences the entire term and
the contribution from the Reynolds stress anisotropy ��cb to the relaxation function
f is now included in this �slow
 term contribution to �h

c �
One of the improvements in the current elliptic relaxation formulation is that

the scaled relaxation function f de�ned in Eq� �	
 is O��
 in the log�layer region�
This scaling negates the adverse in�uence of the elliptic operator in the log�layer that
occurred in the original �Durbin ����a
 formulation� In order to retain this benign
e�ect in the tensor representation formulation used here� it is necessary to ensure that
the expansion coe�cients �n also have this neutral e�ect�

Previous representations for the Reynolds stress anisotropy tensor have used basis
tensors of the form S� SW �WS� and S� � �S�S�I
�� In the log�layer� where the
velocity gradient has a y�� behavior� this choice of basis tensors would require that
the corresponding expansion coe�cients ��� ��� and �� have a y� y�� and y� behavior�
respectively� in that region to ensure that f behaves as O��
� Unfortunately� given
that behavior of the �n� the ampli�cation e�ect would now e�ect the �n and the
sought�after O��
 behavior for the f is lost� For the fully developed channel �ows of
interest� this problem can be easily circumvented by using a normalized basis set of
the form

T��� � S�� T��� � S�W� �W�S�� T��� � S�� � I

�
� ���


where S� � S
fS�g��� and W� � W
fS�g���� This normalization now makes the
behavior of both the expansion coe�cients and basis tensors O��
 in the log�layer�
which then precludes any adverse e�ect of the elliptic operator in the relaxation
equation ���
�

Boundary conditions for the �n expansion coe�cients are required� Consistent
with the boundary conditions for the tensor function fij� the corresponding �n bound�
ary conditions are listed in Table � as functions of �ij �see Appendix A for details
�

The equivalence of the elliptic relaxation of the expansion coe�cients �n given
by Eq� ���
 with the elliptic relaxation of the function fij given by Eq� ���
 can be
readily shown with the current normalized basis� The solution to Eq� ��	
 is easily
obtained as

�
�h
� � �

h
� � �

h
�

�
�

�

�K

�
��h

c �T
����� ��h
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�p
��h

c���
�

�
��h

c�� ��h
c��
� ���

h
c�� ��h

c��

�
� ���


�



Table �� Boundary Conditions for �n

�n Wall Centerline

��
���p��� ���j���

��wy
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��wy
�
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��c�T
����h

�K

If the tensor representation Eq� ���
 is applied to fhij� then the �n solution from Eq�
���
 would yield for the components of fhij

�
fh��� f

h
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h
��� f

h
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�
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�
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�
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h
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A comparison of the right�hand side of Eq� ���
 with the right�hand side of Eq� ���

shows that the two are equivalent� �The reader should recall from the discussion
following the de�nition of �h

c in Eq� ���
 that the form of the slow term was slightly
modi�ed from the de�nition given in Eq� ��	
� With this change taken into account�
the exact equivalence Eqs� ���
 and ���
 holds�


�� Results and Discussion

All �ow calculations were carried out on fully developed turbulent channel �ows�
The equations that were solved were scaled in wall units with friction Reynolds
number Re� based on channel half�height and friction velocity at the wall� A one�
dimensional �nite�di�erence algorithm described in Appendix B was used for all com�
putations�

As shown in Sec� ���� the representation methodology that has been developed
yields an elliptic relaxation formulation equivalent to the elliptic relaxation of the ten�
sor function fij� While such tensor projection methods have been used in conjunction
with nonlinear algebraic equations� the application here also validates its use with
di�erential operators�

Figures � � � show the predictive accuracy and equivalence of both the �ij �
fij and �ij � �n approaches� The �ow �eld is the fully developed channel �ow at
Re� � ��� �Moser et al� ����
� The �gures include both a linear and log scale in
the wall normal direction� As can be seen from Fig� � for the mean velocity� both
the distribution across the channel and the near�wall asymptotic behavior agree with

�



the direct numerical simulation �DNS
 data� Excellent agreement with the DNS data
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Figure �� Mean velocity distribution across channel at Re� � ���� �a
 log�linear scale

�b
 log�log scale�

across the channel is also shown for the shear stress pro�le �Fig� �

 however� the
asymptotic approach to the wall is greater than the theoretical estimate of O�y�
�
The discrepancy becomes apparent for values of y � �� This result is in contrast
to the predictions for the turbulent kinetic energy shown in Fig� �� In this case
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Figure �� Turbulent shear stress distribution across channel at Re� � ���� �a
 linear
scale
 �b
 log�log scale�

the near�wall asymptotic behavior is consistent with the DNS results but the overall
values are slightly lower across the channel than the DNS data� Overall� the predictive
results for the mean velocity� Reynolds shear stress and turbulent kinetic energy are
quite exceptional and show that the method can be calibrated to provide excellent
predictions of this �ow �eld� In actuality� since the models are formally equivalent�
no changes are required in any of the calibration constants�

Since a full di�erential Reynolds stress model is used for the turbulent velocity
�eld� it is possible as well as insightful to further examine the component stress
predictions� Figures 	 and � show the ��� and ��� component stresses� Since the

�
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Figure �� Turbulent kinetic energy distribution across channel at Re� � ���� �a

linear scale
 �b
 log�log scale�

near�wall asymptotic behavior O�y�
 is dominated by the ��� �and ���
 components�
it is not surprising to see from Fig� 	b that the near�wall asymptotics closely match
the DNS results� The O�y�
 behavior that characterizes the DNS results for the ���
component �see Fig� �b
 are very closely replicated by the predictions� Fig� 	a shows
that across the channel predicted results were lower than the DNS results for the ���
component� For the ��� component� however� the predicted peak value was higher
than the DNS results� but the predicted values were lower over the remainder of the
channel� as seen in Fig� �a�
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Figure 	� Reynolds normal stress component ��� distribution across channel at Re�
� ���� �a
 linear scale
 �b
 log�log scale�

An interesting assessment of how well the elliptic relaxation formulation models
the redistribution terms across the channel can be obtained from Eq� �	
� The
quantity �Kfij obtained from the explicit representation given in Eq� ���
 and the
elliptically relaxed �n from Eq� ���
 are plotted in Fig� � along with the quantity
�ij����dij�bij
 obtained from the DNS data� As Fig� �a shows� the �Kf�� component
produces the corresponding DNS results very well in the near�wall region and in the
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Figure �� Reynolds normal stress component ��� distribution across channel at Re�
� ���� �a
 linear scale
 �b
 log�log scale�

outer layer region toward the centerline� Between these two regions� the peak value
of the computations greatly exceeds that of the DNS� The normal �Kf�� and �Kf��
components show an even poorer prediction of the DNS results� In these cases� only
the outer layer region is correctly predicted
 whereas� over the rest of the channel the
qualitative and quantitative predictions are generally poor� While the results of this
a priori validation of the elliptically relaxed function �Kfij are disappointing� it is
clear that the actual predictions of the fully modeled set of equations are generally
very good� Thus other modeled terms in the formulation are able to account for any
discrepancies in the prediction of the redistribution term�

As Fig� � shows� all components of the elliptically relaxed redistribution term
correctly reproduce the DNS data in the outer layer of the channel �ow but di�er
extensively from the DNS data when reproducing the inner layer� Since the elliptic
operator term ��L�r�
 is responsible for the deviation of the �n from their quasi�
homogeneous �h

n forms� it is worthwhile to quantify the size of the region across the
channel that is a�ected by this term� Figure � shows the distribution of �L�r��n
across the channel for the three expansion coe�cients �n � �� �� �
 at three di�erent
values of Re� � In the inner layer� the wall unit scaling basically collapses the results
for all values of Re� � with the exception of the �� component where the results in the
near�wall region show some dependence on Re� 
 this sensitivity to Re� is not found in
the other components as Figs� �b and �c show� The e�ect of the elliptic operator falls
to zero at y �wall unit
 values around ���� The overshoot in the outer layer shown in
all the �gures is attributed to the asymptotic behavior of the energy dissipation rate
� in this region� Both r��n and � decrease �L increases

 however� the dissipation
rate � decreases faster �L increases faster
 than the corresponding decrease in r��n�
The variation with Re� in this region is not surprising since the wall unit scaling is
not the proper scaling for this region�
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Figure �� Comparison of predicted redistribution term components with DNS data
at Re� � ���� �a
 ���component� �b
 ���component� �c
 ���component� For all
components �ij � �n results are �Kfij � and DNS results are �ij����dij�bij
�
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�� Summary

A methodology has been developed that introduces a polynomial representation
for the tensor redistribution function fij� An elliptic relaxation equation� analogous to
the fij relaxation equation is formulated for the polynomial expansion coe�cients �n�
The new prediction method is demonstrated on a fully developed channel �ow problem
and gives similar results to the previous elliptic relaxation method for fij � A formal
equivalence is established between the elliptic relaxation of the tensor function fij and
its tensor representation� Although the predictions of the mean velocity and turbulent
stresses are generally accurate over the channel� an a priori assessment shows that
the current formulation does not model the redistribution well� Such results are
enlightening but are not uncommon
 the results re�ect the fact that in modeled
closure schemes� a combination of modeled terms combine to yield predictions of
quantities such as the mean velocity and Reynolds stresses�

While the theoretical approach developed here does not result in a reduction
in computational cost� it does introduce a new methodology that is requisite for
developing elliptic relaxation explicit algebraic stress models� The next step in the
development of such models will be to introduce representations for the Reynolds
stress anisotropies and analyze the e�ects of modeling the turbulent transport and
viscous di�usion terms consistent with the approximations made in the formulation
of algebraic stress models�
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Appendix A �n Boundary Conditions

The expressions for the �n boundary conditions are derived from the basis tensors
T
�n�
ij used in the representation of fij

fij �
�X

n��

�n �T
�n�
ij �

����������
���������

f�� � ��T
���
�� � ��T

���
��

f�� � ��T
���
�� � ��T

���
��

f�� � ��T
���
��

f�� � ��T
���
��

�A�


Table � gives the corresponding boundary conditions for these fij components� The
boundary condition for �� is directly proportional to the f�� boundary condition and
is given by

���w �
f���w

T
���
��

�
p
�f���w �

���p������
��wy

�
���

�A�


The coe�cient �� appears in all three expansions of the diagonal terms of fij� If
fij is traceless� a unique expression for �� at the wall will be obtained� From the
representation for f��� ���w can be immediately written as

���w �
f���w

T
���
���w

� ��f���w �
��������
��wy

�
���

�A�


The representations for f�� and f�� can be used to obtain an equivalent expressions
for the �� boundary condition

���w �
f���wT
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���w � f���wT
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With ���w known� the representation for either f�� or f�� can be used to obtain ���w�
From the f�� representation� the wall boundary condition on �� is given by

���w �

�
f���w � T
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Appendix B Numerical Solution Methodology

A one�dimensional �nite�di�erence code was used for all computations� All equa�
tions were normalized by the bulk viscosity and friction velocity �i�e�� wall units
�
The di�erencing template was node�centered with clustering close to the wall using
an exponential stretching function� In terms of the scaling used for the channel �ow
calculations� the ��� node grid had the �rst point at a height of ��� wall units� The
channel Reynolds number Re� determined the channel grid height� The K and �
equations were implicitly coupled as were the �ij � fij equations� and for the second
model� the �ij � �n equations� The variables U�K� � and �ij were solved in a time�
dependent mode� while the fij or �l equations were not �i�e�� �t � ��
 All variables
were updated at each time step�

In this appendix� the terms with the superscript �n � �
 denote variables that
were implicitly solved for and the terms with the superscript �n
 were variables used
explicitly at each iteration� The Reynolds stress equations coupled implicitly with
either the fij or �n equations were solved �rst� with the momentum� turbulent kinetic
energy and dissipation rate equations solved second� An updated ��� was used in the
momentum equation� but the eddy viscosity in the turbulent transport terms of all
the equations was not updated until after the completion of each time step� Typically
solutions were re�started from previous turbulent �ow calculations�

The symbol y� denotes the height of the �rst node from the wall and �w denotes
the boundary condition value for �� The discretized form of the governing equations
are as follows� For the � � f model
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The boundary conditions were implicitly written for the fij as
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For the � � �l model
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Similarly� the boundary conditions were implicitly written for the �l as
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